INVESTIGATION ON INFLUENCE OF FABRIC WEAVE ON MECHANICAL AND CONDUCTIVE PROPERTIES OF CARBON COATED TEXTILES

Emma Danjoux, Modesta Mikute, Jurgita Domskiene 2022 Kaunas University of Technology ERAMUS student from ENSAIT, Faculty of Mechanical Engineering and Design' e-mail: <u>emma.danjoux@ktu.lt</u>

Introduction

Conductive textiles are used to create medical sensors, heating garments, antistatic shielding. Electrical properties are obtained through different technologies. The aim of this research is to investigate the influence of the fabric weave type on mechanical and conductive properties of carbon black coated textiles.

Experimental details

Basic materials and parameters of the samples

Weave type	Density, cm ⁻¹		Mass,	h, mm	Β, μNm	
	Warp	Weft	g/m²		Warp	Weft
A1 Twill	28	20	153	0.47	19.2	7.7
A2 Plain	28	20	155	0.43	22.9	15.1
A3 Satin	28	20	155	0.54	20.4	4.9

Warp Weft

70% CO; 30% PES 100% PES

Samples 100×100 mm; 100×200 mm For investigations samples 50×200 mm

Screen printing technology

TUBICOAT ECH properties

Activ Thic Tem dry Prop

Electrical resistivity determined according to ΕN 16812:2016.

KEITHLEY 2614B SourCeMeter®

Fabr

Aver Ω/m Benc μNm Coat g/m² Area

ensait **INDUSTRIAL** engineering

ve content	Approx. 36 %
kness <i>h</i>	0.1-0.2 mm
perature to	80-100°C to dry then >140°C for 2 min
oerties	Resistance < 50 Ω/m ² when wet add or 100-200 g/m ²

Results

					-	
	A1 Twill		A2 Plain		A3 Satin	
	Warp	Weft	Warp	Weft	Warp	Weft
rage Resistance,	720	751	434	623	524	613
ding rigidity B, າ	129	113	130	115	124	82
ting absorbed,	87		115		115	
a density, g/m ²	240		270		270	

Change of coated samples **B** parameter comparing with base material

Conclusions

1. It was estimated that the weave type is of significant importance to prepare fabric with electrical properties by screen printing technology and TUBICOAT ECH paste.

2. Results of the experimentation and theoretical investigations has proved that plain is the best weave to create conductive textile by coating. The homogenous construction of plain weave fabric allows to obtain more uniform coating layer and lower electrical resistivity.

3. Conductive coating has influence on the mechanical properties of fabric as yarn movement during performance has been restricted.